
API Testing: REST API, gRPC, and
graphQL Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
API Testing: REST API, gRPC, and graphQL
6	 Quality Characteristics for Representational State
	 Transfer (REST) API Testing
24	 gRPC and graphQL

References
27	 Aknowledgments
27	 Purpose of this Document
28	 Trademarks
28	 Works Cited

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

General Information

KEYWORDS

API Headers, Data Contracts, HTTP status codes, REST API,
RESTful API, gRPC, graphQL

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR API TESTING: REST API, GRPC, AND GRAPHQL
Introduction to Quality Characteristics for Representational State Transfer (REST) API Testing
Understand what a REST API is

Functional Testing
Understand what a REST API data contract is
Understand what a REST API header is and what might be included in an API header call
Understand REST API response validation
Understand REST API data handling
Understand REST API versioning and what triggers and API version change
Understand the differences between paths and parameters
Understand factors in good API test design

Non-Functional Testing
Understand what should be covered in non-functional API testing

Introduction to gRPC and graphQL

gRPC
Explain the difference between gRPC and REST
Explain the difference in error codes between gRPC and REST

graphQL
Explain the purpose and use of graphQL

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Quality Characteristics for Representational
State Transfer (REST) API Testing
Introduction
REST APIs are one of the most commonly used in
industry today. REST stands for Representational
State Transfer. It is a set of constraints as opposed
to a protocol or standard.

Returning to the ‘What is an API’ analogy of a
game of catch, a REST API might only accept a
tennis ball that is yellow – rejecting other balls
such as an orange tennis ball or a black billiard
ball. When the REST API receives the yellow
tennis ball, it would process the ball (a message)
and return a reply.

One characteristic of a REST API is that the
messages (sent and received) are predominantly
in the JSON (JavaScript object notation) format. If

the reader is not familiar with JSON, it is suggested
they become familiar with it.

A formal definition of REST API is as follows:

REST is a set of architectural constraints, not
a protocol or a standard. API developers can
implement REST in a variety of ways.

When a client request is made via a RESTful
API, it transfers a representation of the state of
the resource to the requester or endpoint. This
information, or representation, is delivered in one
of several formats via HTTP: JSON, HTML, XLT,
plain text, and more. JSON is the most generally
popular file format to use because, despite its
name, it’s language-agnostic, as well as readable
by both humans and machines.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

Headers and parameters are also important in the
HTTP methods of a RESTful API HTTP request, as
they contain important identifier information as
to the request’s metadata, authorization, uniform
resource identifier (URI), caching, cookies, and
more. There are request headers and response
headers, each with their own HTTP connection
information and status codes.

In order for an API to be considered RESTful, it has
to conform to these criteria:

•	 A client-server architecture made up of clients,
servers, and resources, with requests managed
through HTTP.

•	 Stateless client-server communication, meaning
no client information is stored between get
requests and each request is separate and
unconnected.

•	 Cacheable data (i.e., data that is in fast-
access memory) that streamlines client-server
interactions.

•	 A uniform interface between components so
that information is transferred in a standard
form. This requires that:

o	 Resources requested are identifiable and
separate from the representations sent to the
client.

o	 Resources can be manipulated by the
client via the representation they receive
because the representation contains enough
information to do so.

o	 Self-descriptive messages returned to the
client have enough information to describe
how the client should process it.

o	 Hypertext/hypermedia is available, meaning
that after accessing a resource the client
should be able to use hyperlinks to find all
other currently available actions they can
take.

•	 A layered system that organizes each type of
server (those responsible for security, load-
balancing, etc.) involved in the retrieval of
requested information into hierarchies, invisible
to the client.

•	 Code-on-demand (optional): the ability to send
executable code from the server to the client
when requested, extending client functionality.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

Though the REST API has these criteria to
conform to, it is still considered easier to use than
a prescribed protocol like SOAP (Simple Object
Access Protocol), which has specific requirements
like XML messaging, and built-in security and
transaction compliance that make it slower and
heavier.

In contrast, REST is a set of guidelines that can be
implemented as needed, making REST APIs faster
and more lightweight, with increased scalability—
perfect for Internet of Things (IoT) and mobile app
development. (RedHat, 2020)

Functional Testing

INTRODUCTION
Functional testing is designed to assess the
ability of the application to provide the proper
functionality to the user. It tests what the software
does. A tester will need to keep a few things in
mind when testing a REST API.

1.	 API Data Contracts
2.	 API Headers
3.	 Response Validation
4.	 Data Handling
5.	 API Versioning
6.	 Paths and Parameters
7.	 Test Design

Each of these is discussed in the sections below.

API DATA CONTRACTS
A contract is an agreement between at least two
parties where there is benefit to each party. In
API data contracts, the ‘agreement’ is the type
of data the API service provider will accept as

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

a request and the type of data the provider will
send in a response. If there is a significant change
in the data the API will accept or the data in the
response, the ‘contract violation’ is considered a
breaking change.

As an example, when something is purchased,
there is agreement to use a certain type of
currency for an agreed product. If the provider
requires dollars as opposed to crypto coins, a
‘request’ to purchase a product will fail (a failure
response) if the requestor attempts to buy the
product in crypto. Similarly, an API might expect
an ‘age’ parameter to be an integer (e.g., 30)
instead of a string (e.g., “thirty”)”.

A more formal API Data Contract definition is as
follows:

Data contracts are a set of definitions and
constraints for the structure of the data that
Intelligent Recommendations consume. To allow
Intelligent Recommendations to ingest the data
shared with it and provide recommendations, you
need to adhere to the data contracts as described
in this article.

(Microsoft, n.d.)

A data contract may contain multiple parameters,
nested or un-nested objects, and different data
types.

The data types can be as follows:

•	 String
•	 Number
•	 Boolean
•	 Array
•	 Null
•	 Object

(W3 Schools, n.d.)

Testing the request body data contract needs to be
inclusive of the following:

•	 String parameter tests will need to validate
different string lengths including an empty
string and the boundary of 4M. (MIcrosoft, n.d.)

•	 Dates are often written as a string; hence, tests
will need to verify the date time zone, the date
format (i.e., yyyy-MM-dd:hh:mm:ss), and the
date validity (i.e., 29 February is only accepted
on leap year)

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

•	 Numeric parameter tests will need to include
integers and decimal values (floats) with both
positive and negative (less than zero) values.
In addition, the tests will need to validate
decimal values with different degrees of
precision (number of digits to the right of the
decimal point). Boundary values must also be
considered.

•	 Boolean parameter tests will need to include
the case of the parameter (True vs. true).

•	 Null tests will need to be included in other type
parameter tests including strings, numbers,
Booleans, arrays, and objects. Null may appear
as null, “null”, or as an absent parameter. The
tester will need to validate how each scenario is
handled.

•	 Arrays parameter tests will need to include an
empty array, an array with one value, and an
array with multiple values.

•	 Object tests will need to follow the same criteria
as a parameter tests – treating each object as a
child or partial contract.

Data contract negative tests will need to include
the following:

•	 Data type validation (i.e., using an integer such
as 0 or 1 for a Boolean value).

•	 Invalid parameter key casing (i.e., {“Key”:
“value”} vs. {“key”: “value”}).

•	 Missing parameters (i.e., the data contract calls
for {“A”:”a”, “B”:”b”} and the data contains only
{“A”:”a”}).

•	 Extraneous parameters (i.e., the data contract
calls for {“A”:”a”, “B”:”b”} and the data contains
an extra parameter {“A”:”a”, “B”:”b”}, {“C”: “c”}).

A data contract can be considered “strict”
where a missing parameter is considered null,
and an extraneous parameter result in a failure.
Documentation will need to be clear on the strict-
ness of the data contract and the tests will need
to be inclusive of strict-ness validation. A data
contract can have strict-ness applied to the full
data contract or parameters in the data contract.
Each parameter will need to have “optional” or
“required” flagged (in the data contract and API
documentation) so the end user and tester can use
and test the endpoint accordingly.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

API REQUEST HEADERS
An API header might be thought of as icing (a
header) on a cake (a request body). The icing
‘surrounds’ the cake yet is an important part of
the cake. Icing is not required on a cake, but
most cakes have icing. If a piece of chocolate
cake is requested, the requestor might accept a
piece of cake with chocolate icing but not a piece
of chocolate cake with chocolate icing and nut
sprinkles (especially if there’s a nut allergy!). This
shows how the header plays a vital role in the
security and validation of the API call. In addition,
the header provides information to the service
receiving the request (the service providing the
API). A header can provide information in both the
request and the response. Conversely, a header
can be different between a request (header) and
response (header).

An API request and response will have HTTP
headers that will need to be evaluated and tested.

A formal definition of an API header is as follows:

In API requests, request headers are used to
provide additional information for a server to
process an API request. For example, they might
specify that the data being sent is in JSON format,
identify which version of the API to call, or provide
an API key for authentication. Typically, headers
are used to provide some metadata related to the
request, and don’t directly specify which data you
want to retrieve (that’s handled by the API request
URL). (Ana, 2023)

The most common parts of a header the tester will
need to evaluate are the Authorization attribute,
the Accept attribute, and the Content-Type
attribute.

Bearer/JSON Web Token (JWT) Authorization
HTTP Header

Where a web site might have a security layer
requiring a user ID and password to get access,
an API might have an authorization ‘key’ to allow
(or disallow) API calls. A common approach to
the authentication ‘key’ is a Bearer token or JWT.
This JWT header token is part of the API header.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

Authorization tokens tend to have an expiry date,
so the person or process may need to periodically
get a new token. In other words, if the requestor
has a key, it can be used for a set period of time
(e.g., 30 minutes) and the API calls will no longer
accept a request after the token expires; hence, the
user will need to get a new key after the expiration
period has passed.

When testing a REST API that uses a JWT token
for authorization, the tester will need to evaluate
the token to validate that the correct token
content is present for valid access and yet does
not have too much access – creating a security
attack pathway. An invalid token, or token that is
missing needed access information, will result in
a 401 (unauthorized) response from the REST API
request.

A formal definition of a JWT token is as follows:

JSON Web Token (JWT) is an open standard (RFC
7519) that defines a compact and self-contained
way for securely transmitting information between
parties as a JSON object. This information can be
verified and trusted because it is digitally signed.

JWTs can be signed using a secret (with the HMAC
algorithm) or a public/private key pair using RSA or
ECDSA.

Although JWTs can be encrypted to also provide
secrecy between parties, we will focus on signed
tokens. Signed tokens can verify the integrity of the
claims contained within it, while encrypted tokens
hide those claims from other parties. When tokens
are signed using public/private key pairs, the
signature also certifies that only the party holding
the private key is the one that signed it. (jwt.io,
n.d.)

A tester will need to validate the content of the
JWT token. Examples of content that needs to be
validated might include the following:

1.	 An expiry date of the token. REST API calls
made after the token is expired are expected to
result in a 401 (unauthorized) response.

2.	 Access roles (i.e. database.read or database.
write) where an absence of the correct role type
will result in an HTTP 401 (invalid) response.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

Accept Header

An accept header tells the API the data format of
the response. It may be required to stipulate if the
client can accept data in the form of XML, JSON,
etc. Some APIs require the acceptance header
and others use a default (often JSON). Some APIs
support multiple data types for the response. If
the API does not support the accept data type, a
failure response is expected.

Here is a more formal description of an accept
header:

The Accept request HTTP header indicates which
content types, expressed as MIME types, the
client can understand. The server uses content
negotiation to select one of the proposals and
informs the client of the choice with the Content-
Type response header. Browsers set required
values for this header based on the context
of the request. For example, a browser uses
different values in a request when fetching a CSS
stylesheet, image, video, or a script. (contributors,
2022)

Testing should verify that a valid accept parameter
is accepted and the expected output type is in the
response.

Content-Type Header

A content-type header tells the API the data
format of the request. It may be necessary to
stipulate the request format, e.g., XML or JSON. If
the server cannot accept the request data format,
a failure response is expected. Some APIs require
the content-type header and others use a default
(often JSON). If the request does not have a
payload (data), the API may not require a content-
type.

A formal description is as follows:

The Content-Type representation header is used
to indicate the original media type of the resource
(prior to any content encoding applied for sending).
In responses, a Content-Type header provides the
client with the actual content type of the returned
content. This header’s value may be ignored. (MDN
contributors, 2022)

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

Testing should verify that a valid content-type
header parameter is accepted and is in the
request.

RESPONSE VALIDATION
Any request is expected to be followed by an HTTP
response, even if it is a ‘404 file not found’. The
response may include the following information:

•	 HTTP status code
•	 Header information in the HTTP response
•	 HTTP message or message body

An HTTP request is always expected to have a
response. (RFC, n.d.)

The tester should have an understanding and
expectation if the HTTP response is asynchronous
or synchronous. (mozilla.org, n.d.)

Testers should understand the common HTTP
status codes and the HTTP status code expected
for each test scenario. (Mozilla, n.d.)

In summary, the response should have an HTTP
status code but may or may not have an HTTP
header and may or may not have a response
message. In fact, some providers will purposely
not send a response message with an invalid
request as a form of security.

As a tester, it is beneficial to either learn common
HTTP status codes and/or have the HTTP status
code reference close at hand. The Mozilla web
site has a good reference of the HTTP status
codes (https://developer.mozilla.org/en-US/docs/
Web/HTTP/Status). This document will give an
overview of the common successful and error
responses.

Positive (happy path) Validation (20x)

It is important for the tester to know if the
response is expected to be synchronous or
asynchronous. If the response is synchronous,
the response is expected to include the processed
data – completing the API ‘transaction’. An
endpoint with an asynchronous response will
receive the request and send the response while

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

processing is still underway. Endpoints that
have an asynchronous response will often have a
different endpoint to allow the user to query the
progress or status of the work that was initiated
with the first endpoint’s call. In other words, with
an asynchronous endpoint, the first call starts
the ‘transaction’, and the second call gets the
’transaction’ results – completing the ‘transaction’.

For example, when buying a pre-made cupcake
from a shop, it is expected that the cupcake is
available now (synchronous). When buying
a pizza from a pizza shop, it is expected that
the pizza be ready at some time in the future
(asynchronous). Either way, the product is
requested and paid for, but the transaction is
completed depending on the ‘processing’ required.

An example of an asynchronous API workflow
might be as follows:

An end user wants to order a cake that is not yet
made. The end user wants to call the API to order
a new cake.

The endpoint is \cake\create with the following
request body:

{
“type”: “chocolate”,
“icing”: “vanilla”,
“layers”: 3
}

The request for cake might be a 202 Accepted with
the following response:

{
“cakeInvoiceNumber”: 1001
}

The end user would then query the status of the
cake job with the following endpoint \cake\status
with the following request body:

{
“cakeInvoiceNumber”: 1001
}

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

And the response may then be a 200 OK with the
following response:

{
“cakeInvoiceNumber”: 1001,
“status”: “mixing ingredients.”
}

An example of a synchronous workflow might be
as follows:

An end user wants to order a cake that is already
made and ready to sell. The end user wants to call
the API to buy a cake.

An endpoint looks something like \cake\buy with
the following request body:

{
“type”: “chocolate”,
“icing”: “vanilla”
}

The response from the buy request for cake would
be 200 OK:

{
“result”: “You bought a chocolate cake with vanilla
icing!”
}

The synchronous end user transaction is now
complete with no need to call the \cake\status
endpoint.

The above examples show different HTTP
success responses in context of asynchronous vs.
synchronous endpoints. In this context, the tester
will not only need to validate the HTTP response
but will also need to validate that the HTTP status
makes logical sense.

Error Response Validation (4xx or 5xx)

Error response validation can be just as important,
if not more important, as success responses. Error
responses might trigger a failure depending on
the system under test and the circumstance under
which the error is encountered.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

The following examples further explain this
concept:

•	 System A is the system under test. System A
has a REST API endpoint that may call System
B as part of its business logic.

•	 System A has an expectation that no valid
HTTP request results in an error. System A is
expected to scale with increasing traffic and
an error encountered would have negative
financial or business impact.

•	 System B has the expectation that if the system
is under load, the user may get a 429 (too many
requests) response. The user is expected to
retry the request later. There is no financial
or business impact to the API provider or the
business(es) consuming the API.

•	 The tester needs to validate that an error
encountered with System B, is handled in
System A in an expected manner.

From these two examples, error testing could
include:

1.	 Error message validation (i.e., the response
message for a 429 might include the text
“system under load, try again in 5 minutes”).
The error message would need to be robust
enough for the end user to understand the error
while not exposing any intellectual property
or exploitable security vulnerabilities. An
example of an error message that is unhelpful
might be a response body that only consists
of {“result”:“error”}. An example of an error
message with an exploitable response might
be as follows {“result”:”SQL server database
SQL001.business.com is under load, notify
bob@business.com of the issue”}.

2.	 Like a successful response, the HTTP status
code will need to be validated that it makes
sense under the circumstances in which the
error is encountered. For example, the user
would not expect a 400 “Bad request”, when an
unauthorized user is making the call (logically a
401 “unauthorized” would be expected).

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

3.	 Verification of the performance of the endpoint
under defined business expectations. See
the performance portion of this document for
further information.

4.	 Documentation for the end users (or developers)
so there is clear guidance when an error
is encountered. For example, if there is a
knowledge-based article for the API published,
the knowledge-based article might include the
time a user should wait before doing another
call should an HTTP 429 be encountered.

5.	 Logging validation (i.e., the error is cited in a log
store with clear analytics such as a date time
stamp, a traceable error message, etc.).

Date Handling

Date handling is an important consideration for
API testing. JSON does not support the date type.
Therefore, dates often are either sent in the request
(or response) as a string or a double (OADate). For
example, a date might show as

{
“date”: “2021-12-30”
}

Hence, the string will need to be in the expected
format including local(ization) and time zone. If
an invalid format is used, an error can result
(often from parsing the date). In addition, testing
considerations will need to include daylight
savings and leap year. The tester will need to
validate the date time format and validate that the
expected date time format is documented in the
requirements and any support documentation. If
API calls are logged, consistency between the date
format of the API call (request or result) and the
logging timestamp will help prevent confusion (i.e.,
eliminating the need to determine what the time
difference is when assessing the timestamp in the
API call versus the logging timestamp). Developers
often use UTC to avoid time zones and leap year
issues. If UTC is used as a datetime format, the
logging should also use UTC.

Null Handling

Null handling is an important consideration for
API testing. Null (or nothing) can be handled in
several ways, so it is important for the tester to
understand and validate null handling.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

For example, a null value might be handled as an
empty string,

{
“null-value”: “”
}
or a null value can use the value of “null”;
{
“null-value”: null
}
or a null value can be absent from the message;
{
}
hence, how a null value will be handled must be
documented and validated.

Numeric Handling

A numeric value can be positive or negative,
an integer, or a decimal (possibly a float);
hence, numeric handling is also an important
consideration for API testing. If a value has a
precision that is not expected (i.e., 0.1 versus
0.10), the parsing of that value can result in
failures. Therefore, it is important for the tester to
understand and validate how different numeric
values are handled (i.e., rounding or truncating).

An example is as follows:

{
“numeric-value”: -0.15
}

Might be evaluated to 0 for integers only, -0.1 if the
precision is truncated, -0.20 if the value is rounded
up, or 0.15 if the negativity is discarded.

Documentation of data handling is important for
development reference, support reference, and
quality (testing) reference. It is suggested that
there is ‘one source of truth’ where data handling
requirements are kept to prevent confusion and
quality issues (i.e., a swagger API specification).

HTTP Verb (Method) Handling

Depending on the API, only a subset of HTTP verbs
or methods will be supported by the endpoint. For
example, an endpoint might support a GET method
but not a PUT or DELETE method. Validation of
unsupported method calls must be included in the
testing. Documentation of supported methods
will need to be clear as well as the handling of
unsupported methods.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

API VERSIONING
There may be multiple API versions supported at
the same time. For example, an API path with
two different versions might look like v1/users/
{id} and /v2/users/{id} . The approach might also
use a value in a header to declare the API version
being used. A minor change such as an added
optional parameter in the API may not require
a version change. However, a major change or
‘breaking change’, such as a data contract change
or required parameter, is considered a reason to
change the API version.

For example, if there is an API /v1/users?id=1
with the required integer parameter 1 and
there is a change for an optional parameter /v1/
users?id=1&name=jo a version change may not be
needed. However, if there is a required parameter
or a data contract change to the ID parameter
from an integer (/v1/users?id=1) to a string (/v1/
users?id=emp001), a major API version change is
in order.

The tester will need to keep API versioning in
mind when designing, developing, executing,
and reporting on API tests. For example, an

optional parameter in v1 that becomes a required
parameter in v2 would require tests that would fail
if the required parameter is absent for v2 but pass
for v1.

The tester will need to keep in mind the fact
that APIs tend to evolve over time; hence, any
configurability that can be added initially in the
API test code will serve to help future proofing. In
other words, when possible, try to think of how the
API might change and code accordingly to reduce
the need to rewrite test code for each API version.

When reporting on the API test results, the
reporting will need to clearly identify the API
version under test to prevent confusion in the
reports. When testing multiple API versions at the
same time, each API version test result will need to
be distinguishable and auditable.

PATHS AND PARAMETERS
Depending on the API’s design, the URI may have
different paths that may include parameters.

For example, an API can have a path such as \jobs\
fulltime or \jobs\parttime. Further, an API might

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 20Copyright AT*SQA,
All Rights Reserved

have an argument with a parameter such as \jobs\
fulltime?industry=softwaretest.

When testing an API, both valid and invalid paths
and parameters will need to be considered.

For example, a positive test for \jobs\fulltime might
have the negative test for a path of \bogusjobs\
fulltime or \jobs\bogustime.

A positive test case for a parameter \
jobs\fulltime?industry=softwaretest
might have a negative test of \jobs\
fulltime?industry=bogusindustry or \jobs\
fulltime?bogusindustry=softwaretest .

Arguments may include characters that are invalid
in a URL. These characters might be valid if they
are encoded correctly.

For example, an API call to \jobs\
fulltime?industry=software test (space between
“software” and “test”) may be invalid but \jobs\
fulltime?industry=software%20test might be valid.

The tester will need to develop and validate
different positive and negative path and parameter
scenarios. Error handling will need to be validated
(see error response validation section above).

TEST DESIGN
When designing the tests for an API, the following
should be considered:

•	 Structure of the API endpoints
•	 HTTP methods (GET, POST, etc.) used by the

endpoints
•	 Validation of data both sent and received
•	 Error conditions and the resulting error

messages
•	 Security
•	 The API consumer(s)
•	 Performance traffic expectation of each

endpoint
•	 Asynchronous or synchronous nature of the API

architecture

The functionality of the API endpoint(s) can be
determined from the requirements, use cases,
specifications or even conducting exploratory
testing to learn about the application. Design
tests for API endpoints considering both the
functionality and use of the endpoints.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 21Copyright AT*SQA,
All Rights Reserved

Non-Functional Testing
Non-functional testing concentrates on how
functionality is delivered to the user. For a more
complete discussion on non-functional testing, see
[ISTQB_FL_SYL]. This section concentrates on the
non-functional quality characteristics that are of
primary importance in testing API applications.

PERFORMANCE TESTING
Performance testing for an API may have a high
impact resulting in a higher risk and therefore
higher testing priority.

An API can be one in a chain of API endpoints in
a process. Hence, there is value in finding process
bottlenecks (finding the weakest link in a chain).
Slow performance can lead to error conditions
that may or may not have been accounted for in
the process consuming the API. It is important
for a tester to evangelize performance metrics be
included in requirements. Once the performance
requirements are established, the tester needs
visibility to performance issues as early as possible
due to the ‘deep’ nature of many performance

issues. In other words, fixing performance
issues may require significant and expensive
changes resulting in a conflict between fixing a
performance issue and completing a deadline.

Performance testing can take significant time
to complete foundation tasks such as test data
creation, performance environment creation,
performance node (the machines creating the
traffic) creation, etc. A tester needs to keep in mind
the foundation tasks when planning and scheduling
performance tests as these may require significant
time, money, and engagement with other people
such as DBAs, network engineers, etc.

Changes to an already released API may trigger
the need to execute another performance test
pass. The tester will need to be in communication
with the developers to understand if code changes
are likely to result in performance changes.

Though performance testing is considered a
specialty, it is suggested that a tester understands
basic performance objectives and principles. A
non-performance-specialized tester may need
to design, develop, and execute “high-level”
performance tests. If the tester needs to conduct

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 22Copyright AT*SQA,
All Rights Reserved

performance testing, it is suggested the tester
refers to the ISTQB Certified Tester – Performance
Testing (CT-PT) syllabus.

API LOGGING TESTING
Logging plays a critical role in analytics, and
defect triage. A robust logging architecture, can be
utilized to train machine learning algorithms that
can be used to forecast API traffic, identify traffic
anomalies, find security exploit attempts, and
more. (Levy, n.d.) Depending on the project needs,
successful API call logging can be considered as
important as failure logging.

Failure logging is intuitively important to identify
and capture defects. Failure logging is also
important for capturing timing issues - failures that
only appear under certain circumstance or failures
that happen at seemingly random intervals. API
failure log analysis is important for capturing
quality issues in both pre-production environments
as well as production environments. When the
tester does not have access to production logs, the
system administrators often have the responsibility
of giving visibility of log failures (via alerts or

another process) and communicating the failures
to the product team.

API logging may have different levels depending
on the circumstances. For example, verbose
logging may be used if an issue is being
investigated whereas verbosity settings may be
low during normal operations to save time and
space.

An API log should have at least the following
information:

1.	 The date time stamp of the logged event

2.	 Information such as a user ID to differentiate
one user or process from another process that
may be running at the same time

3.	 The HTTP status code of the event

4.	 A message to give enough information to a
human (tester, developer, or data analyst)
to get insight from the log entry for further
debugging

The amount of log information needed depends
on the project and data engineering requirements.
(Tamura, 2015)

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 23Copyright AT*SQA,
All Rights Reserved

A tester’s understanding of API logging allows
the tester to both add quality insights early in the
product life cycle (i.e., how are logs to be assessed
for issues) and provides a foundation for analyzing
issues during testing and after a product has gone
to production.

API SECURITY TESTING
Security plays a critical role in the development
and testing of APIs. Security can include security
token validation, security token expiry validation,
role-based endpoint access and much more.
There are multiple tools that are available for
use in security testing. (Tesauro, n.d.) However,
security tools may require technical knowledge
that equates to a high learning curve. As a result,
many teams will contract a specialist security
tester to perform security testing.

Before a security tester is approached, the team
will need to decide on the following:

•	 The environment to be used for the security
testing. The environment will need to be a
“close to production” reflection of a production
environment to provide the most value.

•	 The schedule of the security testing. The
security testing will need to be scheduled
with the API(s) in a near production state of
development so the testing can identify any
issues with close-to-production code. The
security tests will also need to allow time for
development to fix any issues that arise from
the testing without compromising the intended
release date.

•	 The frequency of the security testing.
Depending on the release cadence and changes
to the API code, or changes in the configuration
in which the API executes, the security testing
will need to be repeated.

•	 The freshness of a security test provider will
need to be assessed. A change of security
testing provider may provide a different security
prospective or may uncover different attack
vulnerabilities.

•	 Approvals for the security testing. Most
environments require specific written
authorization before security testing can
commence to avoid a response to a simulated
attack and to inform all relevant parties when
the attacks will be simulated.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 24Copyright AT*SQA,
All Rights Reserved

gRPC and graphQL
Introduction
gRPC and graphQL both have similarities to
REST API where much of the same test approach
(performance, successful versus failure, logging,
etc.) can apply. Some differences in the API
technologies are cited below.

gRPC
A formal definition of gRPC is as follows:

gRPC is a modern open-source high performance
Remote Procedure Call (RPC) framework created
by Google that can run in any environment. gRPC
can efficiently connect services in and across data
centers with pluggable support for load balancing,
tracing, health checking and authentication. It
is also applicable in the last mile of distributed
computing to connect devices, mobile applications,
and browsers to backend services. (About gRPC,
n.d.)

A big difference between REST and gRPC is
the use of HTTP/2. This dramatically increases
network efficiency and enables real-time
communication by providing a framework for long-
lived connections. (gRPC on HTTP/2 Engineering a
Robust, High-performance Protocol, n.d.)

An additional difference between REST and
gRPC is the use of a .proto file that can be shared
between the API service provider and the API
consumer. This .proto file defines the data contract
to be used by the data consumer. A change to the
.proto file is a breaking change that would trigger
the need to share the new .proto file with the API
consumers. In other words, gRPC incorporates a
.proto file to reference for the data contract – REST
API does not have the advantage of a common
reference file.

When you connect to a gRPC service, you will use
grpc:// instead of http:// or https://.

The gRPC error codes are defined by a gRPC code
– not a http status code as with REST. (Status
codes and their use in gRPC, n.d.). All gRPC codes
start with “GRPC_STATUS” and then contain plain
English terms for the issue such as “Cancelled”.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 25Copyright AT*SQA,
All Rights Reserved

gRPC use has an advantage with lightweight
services (like microservices) where the
requirements need low latency and high
throughput communication.

A downside to using gRPC is that gRPC calls are
not supported in a browser currently. Until recently
(early 2023), most common REST API tools (such
as Postman) did not support gRPC; however, gRPC
tool support, including testing, is becoming more
mainstream.

(James Newton-King, 2022)

GraphQL
GraphQL is a query language for APIs and a
runtime for fulfilling those queries with existing
data. GraphQL provides a complete and
understandable description of the data in an
API. GraphQL gives the consumer of the API the
ability to extract what is needed and nothing
more – making it easier to evolve APIs over time
and enables powerful developer tools. (A query
language for your API, n.d.)

GraphQL uses a query language (“QL”) to retrieve
specific data columns from the data source
somewhat similar to tSQL but using a JSON-like
language instead of a select statement.

For example, if there is a database table
named “Users” with columns name “firstname”,
“lastname”, and “address” and the tester want to
query the “lastname” only in the table (in tSQL):

SELECT lastname FROM Projects

For GraphQL, the following message would be
used:

{
 Users {
 lastname
 }
}

Take note that the parameters in a GraphQL
query differ from JSON as each parameter is not
surrounded by double quotes. This is an important
distinction to keep in mind when learning about
GraphQL.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 26Copyright AT*SQA,
All Rights Reserved

GraphQL uses HTTP; hence, the error codes will
align with HTTP status codes.

An advantage to GraphQL is its strongly-type
schema. GraphQL has a Schema Definition
Language (SDL) which helps determine the data
that is available and the form it exists in. (Hitesh
Baldaniya , 2021)

A downside to GraphQL is its need to perform
a query (DSL) to fetch the data. Further, the
GraphQL needs to be carefully designed so a
single endpoint is created (where a REST API
might have multiple endpoints with different
responsibilities). (Esteban Herrera, 2022)

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 27Copyright AT*SQA,
All Rights Reserved

References
Acknowledgements

This document was produced by a core team from the AT*SQA Foundation Level Working Group – API
Micro-Credentials

Judy McKay (chair).
Johnathan Seal – Author
Earl Burba, Judy McKay, Randy Rice - Reviewers

The core team thanks the review team for their suggestions and input.

AI (such as ChatGPT) was not used to create content for this document.

Purpose of this Document

This syllabus forms the basis for the Association for Software Testing and Quality Assurance (AT*SQA)
Micro-Credential for API Testing. This particular syllabus is focused on the Introduction and the Test
Planning and Design areas.

AT*SQA provides this syllabus as follows:

1.	 To training providers, to produce courseware and determine appropriate teaching methods.
2.	 To credential candidates, to prepare for the exam (as part of a training course or independently).
3.	 To the international software and systems engineering community, to advance the profession of software

and systems testing, and as a basis for books and articles.

The AT*SQA may allow other entities to use this syllabus for other purposes, provided they seek and obtain
prior written permission.

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 28Copyright AT*SQA,
All Rights Reserved

Trademarks

The following registered trademarks and service marks are used in this document:

•	 Windows , Microsoft, Azure, and Azure DevOps are registered trademarks of the Microsoft Corporation.
•	 Apple and iOS are registered trademarks of Apple Corporation.
•	 Postman is a registered trademark of Postman Inc.
•	 ReadyAPI, TestComplete, SOAPUI, and TestExecute are registered trademarks of SmartBear Software.
•	 ASTQB is a registered trademark of the American Software Testing Qualifications Board
•	 ISTQB is a registered trademark of the International Software Testing Qualifications Board.
•	 ChatGPT is a registered trademark for OpenAI Company.
•	 Blazemeter is a registered trademark for the Perforce Software Inc.
•	 JMeter is a trademark of Apache JMeter.

Works Cited
James Newton-King. (2022, 09 22). Compare gRPC services with HTTP APIs. Retrieved from https://learn.
microsoft.com: https://learn.microsoft.com/en-us/aspnet/core/grpc/comparison?view=aspnetcore-8.0

James Newton-King. (2022, 09 20). Test gRPC services with Postman or gRPCurl in ASP.NET Core. Retrieved
from learn.microsoft.com: https://learn.microsoft.com/en-us/aspnet/core/grpc/test-tools?view=aspnetcore-7.0

Ana. (2023, 1 19). What are API Headers. Retrieved from mixedanalytics.com: https://mixedanalytics.com/
knowledge-base/api-headers-explained/#:~:text=in%20API%20Connector%3F-,What%20are%20API%20
headers%3F,an%20API%20key%20for%20authentication.

contributors, M. (2022, 9 9). Accept. Retrieved from developer.mozilla.org: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Accept

Esteban Herrera. (2022, 08 24). GraphQL vs. REST APIs: Why you shouldn’t use GraphQL. Retrieved from

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 29Copyright AT*SQA,
All Rights Reserved

https://blog.logrocket.com/: https://blog.logrocket.com/graphql-vs-rest-api-why-you-shouldnt-use-graphql/

Hitesh Baldaniya . (2021, 07 19). Why and When to Use GraphQL. Retrieved from https://dzone.com: https://
dzone.com/articles/why-and-when-to-use-graphql-1

Jan Kratochvil. (2023, 01 13). A new Postman integration for Azure DevOps users. Retrieved from https://
blog.postman.com/: https://blog.postman.com/postman-integration-for-azure-devops-users/

jwt.io. (n.d.). introduction. Retrieved from jwt.io: https://jwt.io/introduction

Levy, T. (n.d.). A Machine Learning Approach to Log Analytics. Retrieved from logz.io: https://logz.io/blog/
machine-learning-log-analytics/

MDN contributors. (2022, 10 23). Content-Type. Retrieved from developer.mozilla.org/: https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

Microsoft. (n.d.). Data contract overview. Retrieved from https://learn.microsoft.com: https://learn.microsoft.
com/en-us/industry/retail/intelligent-recommendations/data-contract

MIcrosoft. (n.d.). JavaScriptSerializer.MaxJsonLength Property. Retrieved from learn.microsoft.com:
https://learn.microsoft.com/en-us/dotnet/api/system.web.script.serialization.javascriptserializer.
maxjsonlength?view=netframework-4.8.1

Mozilla. (n.d.). HTTP response status codes. Retrieved from mozilla.org: https://developer.mozilla.org/en-US/
docs/Web/HTTP/Status

mozilla.org. (n.d.). Synchronous and asynchronous requests. Retrieved from mozilla.org: https://developer.
mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests

API Testing: REST API, gRPC, and graphQL Micro-Credential Syllabus 30Copyright AT*SQA,
All Rights Reserved

RedHat. (2020, 5 8). What is a REST API? Retrieved from www.redhat.com: https://www.redhat.com/en/
topics/api/what-is-a-rest-api

Redhat.com. (2022, 6 2). What is an API? Retrieved from www.redhat.com: https://www.redhat.com/en/
topics/api/what-are-application-programming-interfaces

RFC. (n.d.). RFC-2616. Retrieved from RFC-2616: https://www.rfc-editor.org/rfc/rfc2616#section-6

Tamura, K. (2015, 04 21). The log: The lifeblood of your data pipeline. Retrieved from www.oreilly.com:
https://www.oreilly.com/content/the-log-the-lifeblood-of-your-data-pipeline/

Tesauro, M. (n.d.). API Security Tools. Retrieved from owasp.org: https://owasp.org/www-community/api_
security_tools

W3 Schools. (n.d.). JSON Data Types. Retrieved from W3 Schools: https://www.w3schools.com/js/js_json_
datatypes.asp

Tesauro, M. (n.d.). API Security Tools. Retrieved from owasp.org: https://owasp.org/www-community/api_
security_tools

W3 Schools. (n.d.). JSON Data Types. Retrieved from W3 Schools: https://www.w3schools.com/js/js_json_
datatypes.asp

www.atsqa.org

