
Making Agile Work in the Real World
Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

Making Agile Work Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
Making Agile Work Testing
5	 Introduction
7	 What Makes Agile Work
13	 Testing in an Agile Environment
20	 Terms Used

References
21	 Works Cited
22	 Purpose of Document
22	 Aknowledgments

Making Agile Work Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

General Information

KEYWORDS

defect triage meeting, definition of done (DoD), definition of ready
(DoR), matrix-managed, pair testing, release, sprint

Making Agile Work Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR MAKING AGILE WORK
What Makes Agile Work
(K2) Summarize how Agile safeguards relate to the safeguards in traditional models
(K2) Explain the advantages to using the Release model for production releases
(K3) For a given Agile project, apply a matrix-management structure
(K2) Explain how quality ownership can be assessed and enforced
(K2) Explain how the DoR and DoD can improve quality
(K2) Summarize examples of DoR criteria for Stories
(K2) Explain how schedule and budget constraints can impact an Agile project
(K2) Explain how the release approach can help reduce schedule slippage

Testing in the Agile Environments
(K2) Explain how grooming sessions can improve testing
(K3) For a given User Story and set of acceptance criteria, identify what is missing to make the Story
testable
(K2) Explain who is responsible for determining how the software should work
(K2) Summarize sources of information a tester can use to understand what to test
(K2) Explain when targeted regression testing should be used
(K2) Explain the leapfrogging approach to testing
(K2) Explain how risk-based testing is used in an Agile project
(K2) Explain how exploratory testing is best employed in an Agile project
(K2) Explain the purpose of pair testing
(K2) Summarize the purpose of root cause analysis

Making Agile Work Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Introduction
The Information Technology (IT) world changes almost continuously as new technologies,
methodologies, and techniques are created. Some of these are adopted as-is, some are
discarded, and others are adapted for various uses. The Agile lifecycle methodology has
been widely embraced in principal, but in practice the methodology tends to be modified.
In some cases, this modification makes sense to adapt the methodology properly to fit
a particular situation, but in other cases the concept of “Agile” remains only in its name,
not in the practice. Because Agile is a pervasive methodology in its various forms, it is
important for all software testers to be familiar with it - in the base concepts, the pure
form, and the various modifications.

For the sake of readability, the term “software tester” will be used to refer to anyone
who is testing software, regardless of their formal role. In an Agile environment,
each team member is responsible for contributing to the quality of the product, via
the implementation of and participation in quality practices. Software testing, in this
environment, is an assessment of the quality of the software that has been built.

Making Agile Work Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

This syllabus focuses the Agile methodology from the viewpoint of the software tester.
This includes looking at how an effective Agile team works, the basic rules of an Agile
methodology, and how a software tester fits into this environment. This syllabus is
intended for use by all members of an Agile team as well as anyone managing an Agile
project. This includes product owners, business analysts, developers, software testers,
project managers, scrum masters and anyone else who is involved with the development
and testing of a product in an Agile environment.

Making Agile Work Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

What Makes Agile Work
Failures of Agile projects are common. While one
of the goals of Agile is to achieve working code
faster and with less overhead, this only works
well when the team is following all of the Agile
guidelines. The Agile approach has expectations
for team behavior that allows the goals to be
met. Agile removes some of the safeguards
that are built into other methodologies, such as
agreed requirements that don’t change, reliance
on documentation to communicate information,
clear role definitions, and traditional project
management structures. When the safeguards
are removed and the Agile guidelines are not
followed, the result will be sub-optimal at best and
catastrophic at worst.

Lessons learned from many projects highlight
some of the more important Agile guidelines and
some modifications that help to promote project
success. These are discussed in this section. While
any individual project and project team’s results
may differ, it is good to consider each of these
areas to help improve the chances of success.

The Concept of Releases
Scrum does not have the concept of Releases,
which are collections of Sprints, but most
organizations think in terms of Releases as
sets of functionality. Where Agile promotes the
continuous flow of software into production,
one Sprint at a time, many organizations cannot
absorb this level of constant change. Changes
to production often have a level of overhead
associated with every release, regardless of how
tiny. In this case, the overhead associated with
the release of software developed in a two-week
Sprint becomes onerous and cripples the smooth
flow of code.

With the concept of releases, a set of functionality
is developed in Sprints and is then released
together to production as a feature set. For
example, a new feature might be revamping of
the medical questionnaire and subsequent risk
calculation for a travel insurance application. This

Making Agile Work Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

is a significant set of functionality that carries its
own risks regarding accuracy, security for data
protection, performance, and integration with the
other parts of the application. If it will take six two-
week Sprints to develop this functionality, it might
make sense to make this a Release.

The Release can include the following:

•	 A hardening Sprint to allow the final end-to-
end testing to occur and all defect fixes to be
verified

•	 A formal UAT for the users to conduct their
testing and provide their approval

•	 A formal performance test to ensure that the
new functionality will not adversely affect the
production software

•	 A formal security test to ensure data privacy is
preserved and that no new vulnerabilities have
been introduced

While it is possible to do some of this testing
during the Sprints, such as the security and
performance testing of the components, there
is still a need for a final regression test pass to
ensure that the whole of the produced software
has not introduced issues.

Using a Release concept still allows the team to
work in an Agile way, but also provides some
safety and comfort to the business in the ability to
control change. Schedules are more predictable
and expected functionality is delivered in a usable
set. It does take a bit more time, usually an
additional 2-4 weeks, but that time can save time
spent resolving production issues. This time also
allows test automation to be completed for the
software in the release without the requirements
for the stubs/drivers that are required when the
test automation is developed during the sprints.

Making Agile Work Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

Maturity & Management of
the Team
For an Agile team to be successful, there must be
a level of maturity and respect within the team.
This is critical for self-management, collaboration,
and equality within the team. Without maturity,
an Agile effort is likely to fail and another lifecycle
model should be selected that has less reliance
on each individual working in a responsible
and mature manner. Individuals who do not
demonstrate maturity will not be able to self-
manage.

Leadership is a tricky aspect of Agile. While
everyone is expected to be self-managed,
realistically, everyone does need to report to
someone at least in an administrative capacity.
This results in individuals being matrix-managed
where they are reporting into the team but also
into their administrative manager. Added to
this complication are the roles of the Product
Owner and the Scrum Master. When there is a
management void, it is not unusual for one of
these people to try to fill in. Unfortunately, these
may not be the right people to actually “manage”

the team as their roles are not supposed to include
management. When they do try to manage the
team, the natural checks and balances expected in
an Agile team are compromised.

The best solution to the management quandary is
for each individual to have a membership within
an organization aligned with their role, e.g. tester,
developer. This provides the administrative
support for the individual - career growth, training
opportunities, mentoring, pastoral care. This is
often accomplished in organizations by having
the individuals report into specialized chapters or
centers of excellence that provide their long-term
relationship with the organization. Individuals are
then “loaned” out to Scrum teams where they will
have an internal reporting structure. This allows
individuals to be self-managed within their teams,
but to still have an administrative management
structure to which they always belong. Scrum
teams will come and go and it’s important for
employee retention for people to feel they have a
longer-term role within the organization.

It’s important to remember that not all individuals
will like working in Scrum teams. There is an
expectation of independence, collaboration, and

Making Agile Work Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

having the knowledge, ability and willingness
to achieve success. While some teams will
work well with nurturing junior team members,
others will not have the time to provide the
necessary support. Some people prefer less
collaboration and more independent working.
Testers are sometimes frustrated by the changing
requirements and the continuous need to retest. A
Scrum team can be very rewarding, but it’s not for
everyone.

Establish the Rules
There is a tendency in industry for Agile to be
implemented as a “learn while doing” experiment.
There may be some initial training and some
coaching, but the team is largely left on its
own to make mistakes and learn how to work
together. Setting some ground rules early can
help set up the team for success and to minimize
misunderstandings.

Agile projects use a significant amount of
terminology that may be new to the team.
Understanding the terms that will be used by
the team and clearly defining these terms will

help everyone to communicate more effectively.
Similarly, understanding the scope and
responsibilities of the various roles will also help.
What exactly does the PO do? Is there a BA on
the project? Who decides who is right if there is
a debate between the developers and testers?
These are all valid questions and should be
resolved before starting into that first Sprint.

Quality rules must also be established. It’s great
to say that everyone is responsible for quality, but
how will that be exhibited, verified and enforced?
What happens if a developer is consistently
introducing low-quality code which is resulting
in accumulating technical debt and interfering
with effective testing progress? Quality gates
must be established and must be measurable and
agreed. It’s a good idea to set SLAs for defect fix
turnaround to help eliminate blockages.

Clear and unambiguous definition of the Definition
of Ready (DoR) and the Definition of Done (DoD)
are very helpful in keeping the quality standard
high and enforceable. If DoR is not met, the story
or code cannot advance to the next stage. For
example, if there is a DoR requirement for testing

Making Agile Work Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

that the code must have achieved 65% coverage
from unit testing, that is easily measured, verified
and enforced. Similarly, the DoD helps to keep the
team conscious of the requirements for moving to
the next stage. If the DoD from testing is that all
high-risk stories are covered with automated tests,
the team cannot count the story points if a high-
risk story’s automation is not completed. This will
result in a reduced velocity, which may be correct,
and will help reduce the pressure to automate later
- since later may never come.

DoD and DoR don’t just apply to coding and
testing. They also apply to the assessment of
stories that are being selected for a Sprint. If a
story doesn’t have adequate Acceptance Criteria
or is not defined enough for the team to be
comfortable with the implementation and testing,
it’s not ready. The DoR for stories should include
the level of clarity, the definition of the acceptance
criteria, prioritization, risk assessment, and a
realistic estimate of effort.

The DoD and DoR must be applied consistently.
As soon as variances are allowed, the rules are
being broken and there’s likely to be a cascade

of “special cases”. This can result in sloppy work
that pushes the difficult and time-consuming
work, such as test automation, to a later time. At
times it may make sense for the entire team to re-
evaluate the DoR and DoD, but this must be done
consciously and by the entire team so that the
ramifications of change are understood.

Time & Money Constraints
are Real
It is rare to find a project that is truly not
constrained by time and money. This immediately
breaks the Agile rule of allowing the software to
grow organically as new requirements are found.
Welcoming change sounds great for the user
and demonstrates flexibility, but will the changes
actually fit within the necessary timeframe and
budget? If not, welcoming change may not be
possible. It’s important that the PO and end
users have an understanding that while some
requirements change during development may be
possible, not all changes can be accommodated
without budget or schedule changes. Sadly, end
users and POs are often sold into the Agile plan by
understanding that they will have a wide ability to

Making Agile Work Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

make changes - and they are sorely disappointed
when that doesn’t happen. As a result, while
it would be great to start coding and see what
happens, business reality doesn’t allow that
flexibility. The end product must do x and it must
do it by x date within x cost. This is one of the
ways the release structure can help to control the
changes in the project.

Another important concept is that the MVP is not
the final product; or, maybe more accurately, it
shouldn’t be. When projects are discussed and
proposed, it is the full set of capabilities, not a
scaled down version, that must exist in production
for a significant period of time - including being
supported by the team for that time. When
the MVP becomes the final product, it’s usually

because the time and/or money have run out. This
continual slippage is also better controlled with
the release approach rather than just a large set of
Sprints. Slippage is better controlled with frequent
milestones; if quarterly releases are planned, then
each 12-week cycle allows an assessment of the
progress toward the final product. This results in
less surprises at the end and some hard decisions
earlier.

A project that delivers only the MVP is not
successful. A project that delivers the MVP and
then continues to enhance that MVP to reach the
full planned product, is successful. Particularly in
organizations that are new to Agile, it’s important
to deliver the expected product.

Making Agile Work Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

Testing in the Agile Environment
Working in an Agile environment poses some
unique challenges to testers. Fortunately, good
testing practices still apply. As with all projects,
the accuracy of testing depends on the accuracy of
the requirements.

Get the Requirements Right
Since the requirements will be in a User Story
format, it’s important for the testers to be involved
in the grooming sessions where the Story is
explained and the acceptance criteria are defined.
The more complete and accurate this information
is, the better the testing can be targeted and
the risk can be assessed. Proper prioritization,
risk analysis, and an understanding of any non-
functional requirements should all be outcomes
from the grooming session.

Testers may have a tendency to take a less
active role in the grooming sessions or even
to be intimidated during the sessions, but it’s

important to remember that all team members
in an Agile team are equal - each with their own
responsibilities. Everyone’s voice matters. This
is the time to speak up and persist until there is
a shared understanding of each story. Clearly
defined acceptance criteria are critical for everyone
to understand what must be delivered. Be sure
the acceptance criteria are testable and cover error
handling, data requirements, and usage scenarios.
For example, “must accept an address” is not clear
enough. What is the format? What happens if
the address is not valid? What happens if it’s not
supplied at all? It is the tester’s responsibility to
ask these questions and get the answers during
the grooming session. If the questions are not
asked and answered, the developer will decide
how it will work and there’s no way to assess if
that decision was correct.

Ultimately, the Product Owner determines how the
software should work. The PO is responsible for
communicating with the end users to understand

Making Agile Work Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

what they need. If possible, the tester should
also work with the end users to understand
usage scenarios and use cases that can be used
in exploratory testing. It’s important to testers
to seek out all sources of information to best
understand what to test and to prioritize tests.
Reading documentation, investigating legacy
systems, talking with other teams regarding
integrations are all ways to expand the knowledge
needed to test effectively.

Organizing the Testing
With any project, the incoming quality will
determine the testing effort. It is a good practice
to ensure that unit test coverage is in the DoD for
the developers to release code into the build. This
coverage must be assessed and reviewed by the
team before code is allowed to be released. By
ensuring this practice is in place and is consistently
reviewed, quality ownership becomes shared by
the team.

It can be quite difficult to keep up with the testing
work, particularly in the later Sprints when there
is a larger amount of code to be regression tested.

Targeted regression testing is the best approach,
requiring close collaboration with the developers.
As mentioned above, the use of a hardening sprint
to conduct final end-to-end regression testing
provides an additional safeguard from regressions
creeping in, particularly later changes that affect
early code.

The leapfrogging approach can work well to
allow the testers to fully test and automate the
code from a Sprint. This requires at least two
testing teams who will alternate owning a Sprint,
effectively giving each team two full Sprints of
time to test the code from one Sprint. In this
case, the first team would test Sprint 1, the
second team would take Sprint 2, then the first
team would take Sprint 3 and so on. This allows
more time for testing without compromising the
ability of the testers to be involved throughout the
Sprint, including participating in the planning and
grooming sessions.

Using the right tools will also save significant time
and will support continuous reporting. Sprint
testing doesn’t allow time for gathering and
reporting metrics - those need to be accumulated

Making Agile Work Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

automatically as data is entered into the test/
defect management system. Rather than using
a general tool such as MS Excel, it’s better to use
tailored tools such as Jira, Azure DevOps, Rally, etc.
to store the testing and defect information. These
tools support maintaining the backlog, prioritizing
the work, assigning the work, monitoring
completion of tasks, and traceability.

When configuring a tool, it’s important to consider
the reporting that will be needed. In Agile projects,
dashboards are frequently used to provide up-to-
date information on the development and testing
efforts. Configuring these dashboards at the
beginning of the project and ensuring the proper
tagging is being used on test cases, etc. will enable
automatic reporting and will save significant time
throughout the project.

Atlassian’s Confluence is frequently used in
Agile projects to store architecture and design
information. While Confluence is an easy tool to
use, using it with proper versioning and ensuring
that outdated information is labelled as such,
tends not to happen. Because Agile projects move
rapidly, it’s easy for information to be valid only
for a point in time. This can be misleading when
an old design document becomes the basis for
testing. If Confluence, or something similar, is used
to store project information, be sure that versioning
and validity dates are also used.

Making Agile Work Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

Good Testing Practices
As with all time constrained projects, risk-
based testing provides an effective approach
to address the highest risk areas first and to
determine the depth of testing required. Tests
should be prioritized based on the risk that will
be mitigated by the test. Features with high risk
levels will require more depth in testing whereas
low risk features may be adequately covered
with more cursory testing. Setting risk mitigation
requirements in the DoD will help to ensure that
quality standards are met and that the project is
achieving the risk mitigation goals.

The proper testing techniques to use depend on
the criticality of the software, the risk mitigation
goals, the time available, and the level of detail
available in the requirements. In general in an
Agile project, exploratory testing should always
come first. When software is released into testing,
conducting exploratory testing will provide rapid
feedback to the developers and will help confirm
the tester’s understanding of the software.

There are several schools of thought on the use of
detailed test cases in Agile projects. Some projects
require evidence of due diligence in testing, such
as safety-critical projects. These may require
detailed test cases with defined steps and a record
of execution. Developing and maintaining detailed
test cases takes time, particularly when the
requirements may be changing.

Test documentation needs to meet the needs of
the project and must meet the DoD for testing. In
some cases, the Acceptance Criteria for a Story
may be the basis for a testing checklist. In other
cases, mind maps may be used to plot out various
feasible tests for a particular feature. There is
no one right answer in Agile projects. The test
documentation must be suitable for the project and
the tester and the team.

Testing is sometimes done in pairs. This is an
approach that was first introduced in Extreme
Programming but has also been adopted in some
Agile circles. Pair testing simply means that two
people work together on a test. This pair could
be a tester and a tester, a tester and a developer,

Making Agile Work Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

or even a tester and a user. The goal is to get the
best ideas from the two minds, to evaluate the
outcome together, and to maximize the coverage
and efficiency of testing.

Regardless of the test approach used, the depth
of test documentation and even the completeness
of the requirements, the tester must consider
the quality characteristics of the software being
tested. This includes the functional areas, but also
includes the non-functional areas such as:

•	 Performance
•	 Security
•	 Usability
•	 Compatibility
•	 Accessibility

The importance and depth of testing for
these areas should be considered in the risk
analysis. Software that meets all the functional
requirements may still fail if the non-functional
requirements are not met. It is particularly
tricky to schedule the non-functional testing in
an Agile project since it sometimes requires the
complete product to finalize the testing (such as
performance or security) or requires testing labs

that are expensive to procure for each Sprint
(such as usability labs). While these areas can
be assessed at the Sprint level, they are often
assessed in totality during the hardening sprint.

Defect Management
Accurate defect reporting and good defect
management are important in Agile projects.
Solid defect practices, such as supplying steps
to reproduce, screenshots, and environment
information, are just as applicable to Agile projects
as to any other project. Prioritization is particularly
critical in Agile projects because of the positioning
of the defect into the backlog. It is more efficient
for the testing if defects are resolved quickly -
this avoids blockages and also allows testers to
explore more areas of the software. While the PO
is responsible for prioritizing defects for fixing, the
tester also needs to supply input regarding the
impact of the defect on the testing progress.

Defect triage meetings can be particularly helpful
to ensure prioritization is accurate. It also helps
to review the backlog to ensure there is sufficient
turnaround time on defect fixing. A bloated
backlog may cause slow defect resolution which

Making Agile Work Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

may in turn block or severely hamper manual
testing and test automation development. Short
turnarounds and defined Service Level Agreements
(SLAs) for defect resolution will help the entire
team work more efficiently. Defects should not
be left for the hardening sprint - they must be
addressed as they are found and triaged.

While it is common practice for all defects reports
to be entered into the backlog, some defects
require fast fixes to enable test progress. There
must be a method for classifying these defects and
getting them into the developer workload in the
current Sprint. This means that when stories are
selected for a Sprint, the sum of the Story Points
must be less than the expected Velocity to allow
time for defect fixes. Over time the team will learn
to adjust the Story Point allocation to allow for a
percentage of defect fixes. Some teams actually
include the defect fix time within the Story Points,
but this can be difficult to assess, particularly early
in a project.

Defect triage meetings, if used, must be efficient.
Only new defects should be reviewed and
prioritized. All the necessary people must attend,
including the developers, PO, and testers, and
decisions and action plans must be the outcome
from the meeting. When determining the time
needed for defect fixes, it’s also important to
include the time necessary for confirmation and
regression testing. For critical defects, the fix and
testing should occur in the current Sprint. For non-
critical defects, the fix and testing will occur in a
future Sprint.

In order to ensure the convergence of found and
fixed defects, each defect should be prioritized and
the Sprint Planning Session must review all defects
for possible inclusion in the release. A release with
all critical defects fixed can still contain a large
number of defects that will be annoying for the
users so it is important to be sure that all defects
are reviewed and planned for resolution.

Making Agile Work Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

Because there is a higher attention to quality in
an Agile project, there should be less defects.
If that is not true, review is needed of the DoR
and DoD requirements to see where defects are
slipping through. All escapes should be analyzed
to understand the root cause and to improve the
processes to reduce future defects. Prevention
is much less expensive and time consuming than
resolution.

Lessons for Testers
There are few projects more fun, exhilarating and
satisfying than a well-executed Agile project.
Successful Agile teams bristle with energy,
develop deeper skills and understanding, and gain
a higher level of satisfaction from their releases
than traditional teams. Agile does come with
challenges though and those must be addressed
and dealt with rapidly and maturely. Agile is not
for the faint hearted, but it can be immensely
rewarding. Embrace the challenge, but don’t
expect it to be easy. 	

Making Agile Work Micro-Credential Syllabus 20Copyright AT*SQA,
All Rights Reserved

Terms
Defect triage meeting: a scheduled meeting with all stakeholders to review and prioritize new defects and
assign each one for action.

Definition of done (DoD): The collection of exit criteria which is used to determine if a backlog item is
complete.

Definition of ready (DoR): The collection of entrance criteria which is used to determine if a Story or task is
ready to move into the next phase of implementation.

Matrix-managed: A management structure where an individual reports to multiple entities, directly or
indirectly.

Pair testing: The practice that leverages two different viewpoints for a single test effort.

Release: A set of Sprints in an Agile project that provide fully implemented Epics and Features to the users.

Sprint: An iteration of development in the Scrum framework, normally defined as 2-4 weeks long, which
results in a small piece of usable functionality.

Making Agile Work Micro-Credential Syllabus 21Copyright AT*SQA,
All Rights Reserved

References
Works Cited

AWS. (2023). What is DevOps? Retrieved from DevOps: https://aws.amazon.com/devops/what-is-
devops

Beck, e. a. (2001). Principles behind the Agile Manifesto. Retrieved from Agile Manifesto: https://
agilemanifesto.org/principles.html

Beck, o. (2001). Manifesto for Agile Software Development. Retrieved from Manifesto for Agile
Software Development: https://agilemanifesto.org/

Leffingwell, D. (2021). Welcome to Scaled Agile Framework. Retrieved from Scaled Agile Framework:
www.scaledagileframework.com

Monday. (2023). The ultimate guide to Kanban and how to use it in 2023. Retrieved from
Mondayblog: https://monday.com/blog/project-management/kanban

scrum.org. (2020). scrum.org. Retrieved from Scrum.org: www.scrum.org

Sutherland. (2020). The 2020 Scrum Guide. Retrieved from Scrum Guides: https://scrumguides.org/
scrum-guide.html

Sutherland, S. (2020). scrumguides.org. Retrieved from Scrum Guide: https://scrumguides.org

Making Agile Work Micro-Credential Syllabus 22Copyright AT*SQA,
All Rights Reserved

Purpose of this Document

This syllabus forms the basis of the AT*SQA certification for Agile Software Testing Methodologies.
AT*SQA is an International Standards Organization (ISO) compliant certification body for software
testers. AT*SQA provides this syllabus as follows:

1.	 To training providers - to produce courseware and determine appropriate teaching methods.
2.	 To certification candidates - to prepare for the exam (as part of a training course or inde-

pendently).
3.	 To the international software and systems engineering community - to advance the profes-

sion of software and systems testing and as a basis for books and articles.

AT*SQA may allow other entities to use this syllabus for other purposes, provided they seek and ob-
tain prior written permission.

Acknowledgements

This document was produced by a core team from the AT*SQA Syllabus Working Group – Agile Syllabus:

Authors:
Judy McKay

Reviewers:
Randy Rice
Earl Burba

The core team thanks the review team for their suggestions and input.

www.atsqa.org

