
Test Approaches Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

Test Approaches Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
Test Approaches
5	 Introduction
7	 Testing Levels
12	 Software Development Lifecycles
17	 Product Type
18	 Documentation Requirements & Availability
20	 Risk
22	 Schedule and Budget
24	 Maturity and Ability of the Team

References
25	 ISO/IEC/IEEE Standards
25	 Trademarks
25	 Books
26	 Other References

Test Approaches Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

General Information
STUDY TIME – 145 MINS.

KEYWORDS

acceptance testing, Agile, alpha testing, beta testing,
configuration management system, debugger, drivers, end-to-

end testing, integration testing, interoperability testing, iterative
model, Kanban, operational acceptance testing, product owner,
requirements traceability matrix, risk, risk-based testing, Scrum,
Scrum Master, sequential model, software development lifecycle,

sprint, stubs, system integration testing, system testing, test
levels, unit testing, use cases, user acceptance testing, user

stories, V-model, waterfall

Test Approaches Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR TEST APPROACHES
Introduction
(K1) Recall factors to consider when selecting a test approach

Testing Levels
(K1) Recall the purpose of system integration tests
(K2) Summarize the activities that take place during each of the four levels of testing

Software Development Lifecycle
(K2) Compare the advantages and disadvantages of following either a sequential
 or iterative lifecycle

Product Type
(K2) Describe how different product types affect the test approach to be used

Documentation Requirements and Availability
(K2) Describe how different documentation requirements can drive the selection of a test approach

Risk
(K2) Explain how risk affects the choice of a test approach

Schedule and Budget
(K2) Describe how a project’s schedule and budget requirements
 affect the selection of a test approach

Maturity and Ability of the Team
(K1) Recall how the attributes of the team members can affect the choice of test approach

Test Approaches Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Introduction

A test approach defines how the testing for a project will be accomplished. The
approach may be formally defined in the test plan or may be informally agreed
upon by the project team. Approaches can include methods for prioritization
(e.g., risk- based) or may specify that certain requirements be met (e.g.,
regulatory or certification requirements). Test approaches generally reflect the
organization’s test strategy and are used to ensure that the methods and goals
of testing are aligned with the goals of the project team and the stakeholders.

Test Approaches Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

Selecting the proper test approach for a project depends on a number of
factors, including:

•	 Testing levels
•	 Software development lifecycle
•	 Product type
•	 Documentation requirements and availability
•	 Risk
•	 Schedule and budget
•	 Maturity and ability of the team

All of these factors must be considered when determining the best test approach
for any project. Realistically, any one of these individual factors can skew the
decision. For example, if the project is a safety-critical project requiring approval
by a regulatory commission of some type, then documentation requirements
and risk management will become the most important factors in the test
approach decision.

This section explores each of these factors and how they help to determine the
optimal test approach for a project.

Test Approaches Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

Testing Levels
Regardless of how the software is developed
and which lifecycle model is followed, there are
four distinct levels of testing. These levels may
be combined in some cases, but it is important
to follow the level approach to improve the
efficiency of testing and reduce the time required
for troubleshooting and testing for possible
regressions (i.e., regression testing). Adequate
testing at each level is more efficient than a big
bang approach in which testing is only done once
at the end of development.

While testing is generally assigned to particular
team members, such as developers or testers,
testing can also be shared across team members,
with the most suitable team member doing the
testing at a given point in time.

The following list of levels is a categorization of the
types of testing that need to occur and the logical
progression of testing:

•	 Unit testing
•	 Integration testing
•	 System (end-to-end) testing
•	 Acceptance testing

In some cases, system integration testing may also
be required. This happens when multiple systems
- that are comprised of complete sets of software
that provide functionality independently - must
also interface with each other. In this case, testing
is needed to ensure that the independent systems
integrate properly. This type of testing usually
occurs after system testing is completed on each of
the independent systems.

Test Approaches Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

Unit Testing
Developers conduct unit testing to ensure that their
units (or modules) of code are working according
to their requirements and design. Each unit, or set
of testable units, is tested either in an automated
fashion using a static analysis tool, using a unit
test framework such as JUnit, or manually using
a debugger to step through a particular test case.
The purpose of unit testing is to ensure that the
individual units of code function as intended.
Performance testing and cybersecurity testing of
individual, relevant units may also be conducted
during unit testing. Unit testing generally applies
structure-based (white-box) testing.

Test-driven development (TDD, also sometimes
called test-first development) is a form of unit
testing where the test is written before the actual
code is written. In this case, the automated test
will execute and fail, until the entire testable unit
is developed. When the entire unit is available and
free of detected defects, the test code will pass.
TDD was introduced in Extreme Programming
(XP) and is commonly used in Agile environments.
It can also be used to develop unit test cases
when using other development methodologies

such as sequential or incremental, as well as in
environments where safety-critical code is being
produced and must always adhere to the highest
quality standards.

Integration Testing
Developers and/or testers conduct integration
testing to ensure that the tested units work
together. Integration testing focuses on the
communication between units at the points of
interaction. For units that are not ready to be
integrated yet, drivers and stubs may be used as
placeholders. Drivers are used to call the testable
modules or units of code. Stubs are used to act
like a module or unit of code and generally return
a positive response. On a larger scale, service
virtualization (SV) can be used to simulate entire
services or parts thereof. SV is commonly used
when services needed for integration are not yet
available or cannot be tested (such as a banking
backend interface).

Integration testing can be done in a top down
fashion (where the drivers are written first and
can be used to call the units as they become ready
for testing), or a bottom up fashion (where the

Test Approaches Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

individual units are written and tested via a driver
that is written specifically for testing purposes).
The term continuous integration is used to define
a configuration management system that has test
automation built in. When a new unit is checked in,
it can be exercised via test automation with other
units that have also been checked in. Continuous
integration is often used after a significant set
of code has been developed to avoid spending
too much time developing drivers and stubs to
simulate code that has not yet been integrated.

Integration testing is primarily functional, but can
also include performance testing and cybersecurity
testing of the integrated part of the system.
Integration testing is often informal, with little
documentation or formal test scripting.

System Testing
System testing, or end-to-end testing, is conducted
to verify that the software as a whole is working
per the defined requirements (specifications, user
stories, design documents). Testers or quality
assurance (QA) analysts usually conduct this
testing in an environment that is configured
similarly to the production environment and
uses data similar to what would be found in the
production system. The primary goal of this testing
is to ensure that the stated requirements have
been met and test coverage is often tracked with
a requirements traceability matrix (RTM). Test
management and/or requirements management
tools are often used to store test cases, record test
execution and to create the traceability matrix -
mapping requirements to test cases. Documented
test cases may be used to guide the testing,
although lighter methods such as checklist-guided
or exploratory testing may also be used.

System testing is primarily functional, but should
also include performance testing, cybersecurity
testing, interoperability testing and usability
testing. Depending on the product being tested,

Test Approaches Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

system testing may be extended to cover all
components of the system, including software,
hardware, data, and procedures. In some
cases, system testing is the first opportunity to
conduct these other types of testing in a realistic
environment.

End-to-end testing is a type of system testing
that exercises transactional flows through an
entire system or set of systems. This testing often
simulates real world usage and is guided by
process flows and use cases.

Acceptance Testing
The goal of acceptance testing is for the targeted
user or operator to “accept” the software as
working to meet their requirements for the
software. Different types of users can conduct
acceptance testing in different environments. The
following is a list of the most common types of
acceptance testing:

•	 User Acceptance Testing (UAT) – testing
conducted by system users or proxies (e.g.,
business analysts) for those users in order to

determine if the software is fit for purpose. This
is normally performed using documented test
cases and exploratory testing. The users of
the system exercise the system as they would
during normal daily use, including cyclical
functions such as end of month and end of year.
Business analysts will sometimes guide this
testing for the users. The goal is for the users to
“accept” the system based on their evaluation
of whether the acceptance criteria have been
met. The users bring a unique viewpoint that
may be missed by testers who are unfamiliar
with all aspects of system usage and the real-
world conditions that users encounter.

•	 Operational Acceptance Testing (OAT) –
testing conducted by system operators to
determine if the software will work in the
production environment when fully deployed.
Ideally, this testing is conducted in a staging
environment that is an exact replica of
production; where that is not possible, the
environment should be as close as possible
to production. System operators use this
testing to ensure that the software will work
properly with load balancers, firewalls and
other production equipment, as well as with

Test Approaches Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

production processes such as backups. Testing
rollout and rollback plans are often part of this
as well.

•	 Alpha Testing – testing conducted at the
development site, but not by the developers or
testers who have been working on the project.
This testing is sometimes called “internal
acceptance testing”, meaning that the testing
is conducted within the organization, but is not
exposed to external users. Training groups and
support groups within the organization are
often used for this type of testing.

•	 Beta Testing – testing conducted at a customer
(or potential customer) site using the customer’s
data and network environment. This testing is
usually conducted by the customer themselves,
although they may have some assistance
from the testers or developers to ensure the
test coverage is adequate. The goal of this
testing is to determine if the software is fit for
purpose in the real production environment
without fully releasing it to everyone. Feedback
from beta testing may result in further internal
development and/or testing prior to the full
production release.

Test Approaches Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

Software Development Lifecycles
Sequential Models
Sequential lifecycle models include waterfall and
V-model. These are considered to be sequential
models because the steps of the development
process are sequential: requirements, design, code,
test, and release. Sequential models require a fully
developed set of requirements before design and
coding starts. It should be noted, however, that in
some versions of the V-model, verification occurs
at each major phase. For example, requirements
reviews may be performed during requirements
development. Unit testing is usually conducted
as the software is being developed. Integration
testing, system testing and acceptance testing
usually occur after development is completed.

In a pure waterfall model, testers usually are
not engaged in the SDLC until the software
is completely built and the developers have

completed their unit testing. In a pure V-model,
testers are engaged early to review requirements,
design documents and to prepare the testware
(e.g., test plan, test cases) prior to receiving the
code to test.

The advantages of sequential models include:

•	 The requirements are considered to be stable
throughout the project

•	 Test automation can start at the beginning of
testing because the software will not change

•	 In a waterfall model, the test team is only
involved from the moment the code is complete,
freeing them for other tasks or other projects

•	 In the V-model, the test team is involved
with reviewing all the documents produced
by the business analysts and developers

Test Approaches Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

(requirements, high-level and low-level design
documents) and can provide input on each of
these, thus engaging with the project sooner
and having input that can influence the quality
of the product

•	 In the V-model, there is generally more time
available to apply structured testing (e.g.,
prepare the test documentation, including test
cases)

The disadvantages of these models include the
following:

•	 Because no code is seen by the testers until all
the code is developed, there is little opportunity
to influence the usability and user experience

•	 The testers need time to prepare the test
documentation (e.g., test cases) after they have
received the code and before they can start
testing

•	 The users’ requirements may change while
development is occurring, resulting in a product
being created that is no longer wanted

•	 If the development time takes longer than
expected and release dates are not moved, the
time for testing is compressed

The sequential lifecycle models, in particular the
V-model, are still used in the industry and are
successful in the proper environments. These
models are particularly common where thorough
documentation is required (e.g., for safety-critical
projects) and where the requirements are not likely
to change over the life of the project.

Test Approaches Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

Iterative Models
Iterative models include basic iterative and Agile.
Agile is usually implemented via one of the
common process frameworks, such as Scrum
or Kanban. Iterative development simply means
that the software is developed in small sets, with
each iteration producing a piece of software
functionality. Iterations vary from 2 – 4 weeks
and each iteration includes analysis, design,
implementation and testing.

In an Agile project using the Scrum framework,
iterations are called sprints. Each sprint has a
planning session which is used to determine
which user stories (i.e., small bits of requirements)
will be implemented during the sprint. The self-
organizing cross- functional team determines
what they can commit to completing within the
sprint. A Scrum Master provides guidance and
coaching for the team and the product owner,
represents the business, and defines and refines
the requirements.

In a Kanban project, the emphasis is on continual
delivery and managing the workflow to eliminate
bottlenecks in the process. While not strictly an
Agile framework, it is frequently used in Agile
environments to manage the workflow by use of
tools such as Kanban boards.

The advantages of the iterative models include the
following:

•	 The team is able to react quickly to changing
requirements

•	 A demonstrable product, or piece thereof, is
available for the customer to see and use

•	 Early feedback can change the direction of the
team and the product to better suit the needs of
the customer

•	 Schedule constraints are handled by
implementing less functionality

•	 Testers are more engaged in the overall process
and tend to form closer relationships with the
developers

Test Approaches Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

The disadvantages of the iterative models include
the following:

•	 Too frequent changes in direction can result in
little or no progress

•	 Lack of detailed documentation means reliance
on communication, which may be difficult for a
team that is dispersed

•	 If cultural issues in an organization are
significant, people may not be able to work
effectively as a cross-functional team

•	 Lack of detailed documentation may make the
model infeasible for some products, particularly
those with regulatory or safety-critical aspects

•	 Test automation is mandatory to avoid manual
testing time becoming increasingly long due
to the larger scope of regression testing as
iterations progress

•	 Rigid adherence to the process can result in a
significant learning curve for a team Iterative
models have been around for many years, long
before Agile was defined. These models have
worked successfully across a wide variety of
software projects and continue to be the most
dominant models in the industry.

Hybrid Models
While there are defined software development
lifecycle (SDLC) models, it is important to
remember that most organizations do not follow
a “pure” model. Most organizations follow
hybrid models that take bits and pieces from
various models to create a best-fit model for
the organization. Sometimes this is done wisely,
picking the most efficient and practical model;
but more often than not, this is done without
considering what is being left out. That is where
the danger lies.

SDLCs have built-in safeguards to ensure that
necessary steps are completed. Picking and
choosing the “best” parts from different SDLCs
is likely to result in weaknesses being exposed.
For example, if an organization were to pick an
Agile SDLC, but also chooses to work without
defining acceptance criteria for stories, there is
a gap created in the validation aspects of the
project. Similarly, if an organization were to pick
a waterfall model, but decides to use stories
to document the requirements, the concept of
completed and well-defined requirements before

Test Approaches Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

the start of coding is violated. This may result
in a product that is incompletely developed or
in a product that necessarily must change as
development progresses. This results in a longer
development time and a compression of the
testing schedule.

When selecting a model, it is important to
understand the project, the team, the product and
the goals of the organization in order to select the
best fit. More information on software lifecycle
models can be found in ISO/IEC/IEEE 12207:2017
and ISO/IEC/IEEE 15288.

Test Approaches Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

Product Type

Another consideration when determining the
testing approach is the type of product that is
being developed. A mobile application that is
expected to last for six months requires a different
approach than software that will control the
navigation of a fleet of aircraft. In general, the
longer the software will stay in production and the
more critical the functionality of the software, the
more formal the approach.

A formal approach may dictate the lifecycle
model, the level of documentation required and
the test techniques to be used. Similarly, a short-
lived application that is used to provide a game
interface for idle travelers may be best served by
a lightweight approach with an Agile lifecycle,
minimal documentation and only exploratory or
acceptance testing.

When deciding how the product type may
influence the test approach, the following factors
should be considered:

•	 Length of time the software will be used in
production before replacement

•	 Any safety-critical aspects of the software

•	 Any regulatory requirements that must be met

•	 Competition and market opportunities (e.g.,
bigger feature set, better usability)

•	 Requirements for security and performance

•	 The testers’ understanding of the product and
domain, and the degree of changes to either the
product or related items

The best test approach for a product is somewhere
on the spectrum from formal and fully documented
to informal and lightweight.

Test Approaches Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

Documentation Requirements and Availability
In software testing, documentation has two
general categories: documents required to properly
test the product, and documents required to
demonstrate the testing has been completed.
The test approach is heavily influenced by the
availability of documentation and the requirement
to provide documentation from the test process.
If there is little or no documentation regarding
what the software is supposed to do or how it will
do it, the tester is forced into an approach that
includes some amount of exploring the software to
understand what it is doing. Creating detailed test
cases may not be worthwhile since the testing will
be occurring while the research is being conducted
to document the test cases.

On the other hand, if test case documentation and
test execution evidence is required by the project,
then that documentation will have to be created,
maintained and updated as needed. If there are
plans to keep a product in production for several
years and updates are likely, there is a greater

need for reusable test artifacts, particularly test
cases. The requirements for a test management
system are influenced by the need to track
documentation and test evidence during testing.

The types of documentation that can be used as
input for the testing effort include:

•	 Requirements documents
•	 Specifications (e.g., technical/architectural, user

and database specifications)
•	 User stories
•	 Business cases
•	 Use cases
•	 Design documents
•	 Screen mockups and wireframes
•	 Sample reports
•	 Existing test cases
•	 Checklists
•	 Defect reports
•	 Requirements traceability matrix
•	 Existing user and operational guides

Test Approaches Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

The types of documentation that can be provided
as evidence of test execution include the following:

•	 Test cases with pass/fail recorded at the test
case and step level

•	 Screen shots
•	 Defect reports
•	 Coverage reports
•	 Test automation logs and reports

Projects have differing documentation
requirements. It is important to select a test
management and document management system
that will help to track, version and report the
documentation that is needed across the variety of
projects, that will also be supported by the tools.
It is important to remember that documentation
has no value unless someone will use it. It is good
practice to always aim for the lightest suitable
documentation for a project; consider re-use,
consider true needs and consider other ways of
communication to ensure that the documents
produced meet the needs of the project without
burdening the team.

Test Approaches Micro-Credential Syllabus 20Copyright AT*SQA,
All Rights Reserved

Risk
In testing, risk is defined as an event or condition
that could occur and would result in a negative
outcome. If the event or condition actually occurs,
it is called an issue [PMBOK]. While a risk has
somewhere between a 1% and 99% probability
of occurring, an issue has 100% probability of
occurring because it has actually occurred.

Risk is a significant factor in determining the
best test approach. Higher risk projects generally
require more formal approaches with more
complete documentation. Lower risk projects can
work with a lighter approach and may require little
or no documentation.

Using risk prioritization, commonly called risk-
based testing, on every project is a strong
approach and helps to prioritize and define all
testing activities, including the following:

•	 Formality of the test approach

•	 Test case preparation and documentation level

•	 Test execution

•	 Defect prioritization

•	 Defect re-testing

•	 Regression testing

•	 Timing of other testing such as security and
performance

•	 Test automation requirements

•	 Depth and breadth of testing

Test Approaches Micro-Credential Syllabus 21Copyright AT*SQA,
All Rights Reserved

Identifying risk is best done with a cross-functional
group who can clearly review the project, its
intentions, and identify the risks that are inherent
in the project and the software being developed.
Once the risks have been identified, they can each
be assessed in terms of likelihood of occurrence
and impact to the customer or system if they occur.
The resulting intersection of likelihood and impact
is often expressed as the risk level. For example,
high likelihood and high impact would result in a
risk level of “High” or “Very High”. Another way
to express the risk level is by numeric scores on a
scale of 1 – 10. This assessment helps to indicate
the mitigation required and can guide the types,
extent and priorities of testing. User training may
be used to mitigate some risks whereas other risks
may require extensive testing in a production-like
environment.

Assessing and ranking all identified risks allows
the team to determine the best approaches
for mitigation and also helps to set the testing
schedule. For example, a high likelihood and
high impact risk that can be best mitigated by
testing will usually require more time in the testing
schedule than a risk with low likelihood and low
impact. It should be noted that there is a degree
of error in assessing risk as it is essentially a
qualitative exercise. Contingency plans are helpful
when low risks may become high risks.

Test Approaches Micro-Credential Syllabus 22Copyright AT*SQA,
All Rights Reserved

Schedule and Budget
Any testing approach must consider the schedule
and budget for the project. It is unusual to find
a project for which there is not a pre-defined
schedule and/or budget. When the test approach
can influence the establishment of a project’s
schedule and budget, adequate time and
resources should be allocated for testing. More
commonly, the schedule and budget are already
set before the testing approach is considered. In
this case, the test approach changes from “what
should we do” to “what can we do”. When defining
the best test approach for a project scenario, it is
good practice to start with the “should” and then
factor that down to fit the schedule/budget.

When schedule is tight, risk-based testing is
the most solid approach. It allows testing to be
prioritized to mitigate the most important risks
first. With a constrained schedule, this will help
provide visibility to the project team regarding the
risk that has been mitigated and the risk that is
still outstanding. Because tight schedules often
result in insufficient testing, it is important that the
project team understands and accepts that there
is significant residual risk. Risk-based testing can
be conducted within any lifecycle. It is a method of
test organization that addresses testing in a risk-
based order, within the overall project or within an
individual iteration.

Test Approaches Micro-Credential Syllabus 23Copyright AT*SQA,
All Rights Reserved

When the budget is tight, testing often suffers
from a lack of time and resources. It is important
to understand the constraints that will be placed
on the testing as early as possible. For example, a
constrained budget may mean that there will be
no dedicated test environments. This may force
the testing effort to share the same environment
as the development effort, potentially resulting
in inefficiencies and re- testing. This quickly
becomes a schedule issue as well. Insufficient
tester resources and inadequate tools may also be
evident when the budget is constrained.

Any possible issues of this type must be
anticipated in the test approach. If testing and
development will be forced to work in the same
environments, using an iterative approach is
logical because of the close interaction. Pushing
more testing earlier (i.e., “shift left”) is another
way to combat tight schedules and budgets. This
allows testing to happen sooner and for quality
issues to be addressed more quickly. Testing will
always be faster and less expensive when the
product being tested is of a higher quality.

Test Approaches Micro-Credential Syllabus 24Copyright AT*SQA,
All Rights Reserved

Maturity and Ability of the Team
One last factor to consider when determining the
test approach is the maturity of the team as well
as the team’s ability. A mature team who has
worked together before and has a high level of
skill and product knowledge may work better with
less documentation and communication than a
team that is new or distributed. Documentation
is a way of communicating and bridging time
zone issues. Less documentation means more
verbal communication is required. A team that
is comfortable with web meetings and video
conferencing may be more effective with less
documentation than a team that prefers emails
and documents to convey information.

Projects that include multiple teams will require
more coordination and timely communication
to avoid creating bottlenecks and frustration.
Teams that have some outsourced aspects may
require more formalized communication and
documentation due to contractual requirements.

A well-skilled, mature team can make any testing
approach work. The challenges often arise in
a team with variable or minimal skills and a
distributed environment where people cannot
easily talk with each other. It is important to
consider the approach that will work best for both
the product and the people.

Test Approaches Micro-Credential Syllabus 25Copyright AT*SQA,
All Rights Reserved

References
ISO/IEC/IEEE Standards

•	 ISO/IEC/IEEE 12207:2017
•	 ISO/IEC/IEEE 15288

Trademarks
The following registered trademarks and service marks are used in this document:

•	 AT*SQA® is a registered trademark of the Association for Testing and Software Quality Assurance

Books
[Anderson00]: Anderson, L.W. and Krathwohl, D.R. (2000) A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, Allyn & Bacon: Boston MA, ISBN-10:
080131903X

[Firtman]: Maximiliano Firtman, “Programming the Mobile Web”, O'Reilly Media;

Second Edition (April 8, 2013), ISBN-10: 1449334970

[PMBOK] Project Management Institute, “A Guide to the Project Management Body of Knowledge (PMBOK
Guide) – Sixth Edition, 2017, ISBN-10: 9781628251845

Test Approaches Micro-Credential Syllabus 26Copyright AT*SQA,
All Rights Reserved

Other References

The following references point to information available on the Internet. Even though these references were
checked at the time of publication of this syllabus, AT*SQA cannot be held responsible if the references are
not available anymore. AT*SQA is not endorsing any of these sites or their products. The references are
provided as a source of information only.

https://techcrunch.com/2013/03/25/ip-oh-my-gosh-all-that-money-just-disappeared/ https://www.reuters.
com/article/us-facebook-settlement/facebook-settles-lawsuit-over-

2012-ipo-for-35-million-idUSKCN1GA2JR

[NASDAQ] https://www.sec.gov/news/press-release/2013-2013-95htm

National Institute of Standards and Technology. Framework for Improving Critical Infrastructure
Cybersecurity. Version 1.1. 2018. https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

National Institute of Standards and Technology. Risk Management Framework for Information Systems and
Organizations: A System Life Cycle Approach for Security and Privacy. Revision 2. 2018.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf

[WCAG] https://www.w3.org/WAI/policies/

www.atsqa.org

